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ABSTRACT: 

This paper verifies Seymour's Second Neighborhood Conjecture, which states that for every oriented 

digraph there exists at least one vertex v such that v has a t  least as many neighbors at distance two 

as it has at distance one. The verification of this conjecture in turn implies partial results for the 

Caccetta-Haggkvist Conjecture and the Behzad-Chartrand-Wall Conjecture. 



1 INTRODUCTION 

A digraph I? is a set of vertices V(r )  = {vl. c 2 , .  . . . v,) and an arc set R ( r )  composed of ordered 

pairs of these vertices. If (vi, vj) E R ( r )  then we say that vi points towards vj . An oriented digraph 

is one in which there are no loops (that is. (e i ,  I : , )  4 R( r )  for all i) and there are no cligons (that 

is, if (vi, vj) E R ( r )  then (vj , vi) 4 R(T) for all i ,  j ) .  For an oriented digraph I?, let the outdegree 

of vo, denoted odr(vo), be the number of vertices vo points towards. Similarly, let the indegree of 

vo, denoted idr(vo), be the number of vertices which point toward vo. Finally, let di(v, r) be the 

number of vertices at distance i from v in the oriented digraph r .  

Define the square of an oriented digraph r ,  denoted r2, to be the digraph on the vertex set V(r)  with 

the arc set R2(r )  = R ( r )  U S where (u, v) E S if and only if (u, w ) ,  (w, v) E R(r )  and (u, v) @ R(r) .  

Seymour's Second Neighborhood Conjecture (SSNC) (Fisher quoting [3]) states: 

For every oriented digraph r there exists a v such that dl(v, r2) 5 2dl(v, I?). 

This can be equivalently stated as [2]: 

For every oriented digraph, there exists a v such that dl(v) 5 dz(v). 

Fisher proved SSNC for tournaments (also known as Dean's Conjecture) [4]. We provide a proof of 

this conjecture for all oriented digraphs. 

The truth of this theorem implies two other partial results: 

(i) Behzad-Chartrand- Wall Conjecture: Define a directed cage to be the smallest d-regulardigraph, 

a digraph with id(vi) = od(vi) = d for all i, of girth g, that is having shortest directed cycle of length 

g. The conjecture states that the number of vertices n for a directed cage is: 



SSNC implies the d = [%I case of this conjecture [ 2 ] .  

(ii) Caccetta-Haggkvist Conjecture: This conjectures st,ates that given I?, a digraph on n vertices 

in which od(vi) 2 d for all i ,  the girth of r is at lrlost 14,. SSNC implies the interesting case of 

d = 2 [5]. 

Note: As much as possible, graph theory terminology is taken from [I]. 

2 DEFINITIONS 

Definition An oriented digraph (a loopless, dire(-t.ed graph without digons) is said to satisfy Sey- 

mour's Second Neighborhood Conjecture at a vertex c:rt iff dl(vo) 5 d2(vo). 

Definition Given an oriented tree, a leaf is any vert.ex u such that od(u) + id(u) = 1. 

Definition A directed cycle is a cycle with all arcs either pointing clockwise or anti-clockwise. 

Definition A non-uniform cycle Cf, on n vertices is a cycle that is not oriented clockwise or anti- 

clockwise. 

Definition A j - complete sun of order j on n vertices is a directed cycle with j arcs, called 

rays, pointing outward from each vertex on t.he cycle. 

3 PROOF 

~ r o ~ o s i t i o n ' l  Suppose T' has a vertex vo such that odr(vo) = 0. Then r satisfies SSNC at vo. 

Proof Because odr(vo) = 0, vo has no neighbors. Thus dl(vo, r )  = dz(v0, r )  = 0. 

Proposi t ion 2 Suppose r is an oriented digraph with some subgraph r,, containing a vertex vo 

such that I?,, satisfies SSNC at vo and odr(vo) = odr,, (vo then satisfies SSNC at vo. 



Proof Because odr(vo) = odryo(vO), the number of vertices vo points towards is equal in both 

graphs. Therefore, dl (vo, I') = dl(vo, rv,). Since r,, is a subgraph of T, d?(vo, r,,) 5 dz(vo, I'). 

The proposition then follows. 

Lemma 1 In every oriented tree r, there ezists at least one vertex vo such that odr(vo) = 0. 

Proof Consider the leaves of a tree. If any of the leaves is a sink, then it has outdegree zero 

and Lemma 1 is satisfied. Suppose then that all leaves are sources. Remove all these leaves and the 

associated arcs. This creates a subtree. If any of the leaves of this subtree is a sink, it has outdegree 

zero because all removed leaves and arcs only contribute to the indegree of the leaves of the subtree. 

If all these new leaves are sources, we may repeat the process by removing leaves and the associated 

arcs from them. This process must terminate at some point because the graph is finite. Therefore, 

there must be some leaf in a constructed subtree that is a sink and, because all removed leaves and 

arcs only contribute to its indegree, has outdegree zero. 

Lemma 2 Any digraph containing at least one oriented cycle satisfies SSNC for at least one vertex 

on that cycle. 

Proof We will first prove j-complete suns satisfy SSNC at every vertex on the graph. First note 

that the sink of every ray of a j-complete sun has outdegree 0, and, thus, the sun satisfies SSNC at 

these vertices. It then suffices to consider only vertices on the cycle. This will be done by induction 

on j. 

For j = 0, C: is a directed cycle which obviously satisfies SSNC at every point on the cycle. 

Assume CL-' satisfies SSNC at every point. Now consider a vertex vj on the cycle. This vertex has 

one more neighbor at distance one in C i  than in Ci-', namely the sink of its additional ray. The 

vertex vi+l on the cycle which vj points towards also has one additional neighbor at distance one on 



its ray, call i t  u. Since 1.1 points towards vj+l and vi+l points towards u,  u is at distance two from 

vj. Thus dl(a,) 5 d?(c., ).  Since vi is arbitrary, this inequality holds for all vertices on the cycle. 

We will now prove Lemma 2 for any digraph I' containing a directed cycle. r ha5 a j-complete 

sun subgraph with j 2 0. Select such a subgraph for which j is the maximum possible. Because 

C i  is maximal, for some vo on the cycle odr(vo) = odCjR(vO) = j + 1. If this were not the case, and 

odr(vo) > j+  1 t/ I .  on the cycle, then there would exist a subgraph C$ where k > j. Bv Proposition 

2, r satisfies SSU(' at this vertex vo. 

Theorem Enery orrernted digmph r satisfies SSNC. 

Proof By Proposition 1 and Lemma 1, if I' is a tree, r satisfies SSNC. By Lemma 2, if r contains 

a directed cycle. i t  satisfies SSNC. Therefore, it suffices to assume r contains cycles. none of which 

is directed. That is. r contains a t  least one non-uniform cycle and no directed cycles. Choose 

a direction (either clockwise or anti-clockwise). (Without loss of generality, choose anti-clockwise). 

Then consider a cycle in I'. For this cycle, remove all arcs oriented anti-clockwise and any now 

isolated vertices. If the resulting subgraph still has cycles, choose one of these and again remove 

all arcs oriented anti-clockwise and any isolated vertices. Repeat this procedure until the resulting 

graph l?o has no cycles. This graph ro  must have a t  least one arc. If it 

does not, it would imply the removal of the anti-clockwise arcs in the last cycle removed all arcs 

in the graph. This would imply the last cycle was directed anti-clockwise, which contradicts our 

assumptions on r. Since ro has no cycles, it is a forest. By Lemma 1, some vertex vo of ro has 

outdegree equal t zero. We will show that the addition of the erased arcs will not alter the outdegree 

of this vertex. 

If vo does not belong to any cycle, we are done. Assume vo belongs to some cycle. All arcs 

that were removed were anti-clockwise with respect to some cycle. Thus, arcs that remain are 

clockwise with respect to some cycle. Let vertex u be a vertex in ro to which we must add an erased 



anti-clockwise arc uiij . Addition of an anti-clockwise arc to a clockwise arc in the same cycle will 

necessarily match the sources of these t.wo arcs. Thus u is also the source of some existing clockwise 

edge in ro. Consequently, odr,(tl) > 0 and the vertex u can not be our vo. This is true at each stage 

in which we add back erased arcs for all the sources of these arcs. Thus, the addition of removed 

arcs will not alter the outdegree of vo. 

By Proposition 1, r satisfies SSNC at this vo. 

Figure 2: Removing anti-clockwise edges from an oriented digraph r 
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